Home  |   Search  |   Contact  |   Conditions  |   Business Solutions  |   About

Create Account   |   Login

Join the world community for sharing Business Info !
 Already have an account ?  Login
Inspection of machinery, equipment and materials

In ultrasonic testing (UT), very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz are launched into materials to detect internal flaws or to characterize materials. The technique is also commonly used to determine the thickness of the test object, for example, to monitor pipework corrosion.

Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is a form of non-destructive testing used in many industries including aerospace, automotive and other transportation sectors.

An example of Ultrasonic Testing (UT) on blade roots of a V2500 IAE aircraft engine.
Step 1: The UT probe is placed on the root of the blades to be inspected with the help of a special borescope tool (video probe).
Step 2: Instrument settings are input.
Step 3: The probe is scanned over the blade root. In this case, an indication (peak in the data) through the red line (or gate) indicates a good blade; an indication to the left of that range indicates a crack.

Automated optical inspection (AOI) is an automated visual inspection of a wide range of products, such as printed circuit boards (PCBs), LCDs, transistors, automotive parts, lids and labels on product packages or agricultural products (seed corn or fruits). In case of PCB-inspection, a camera autonomously scans the device under test (DUT) for variety of surface feature defects such as scratches and stains, open circuits, short circuits, thinning of the solder as well as missing components, incorrect components, and incorrectly placed components. Agricultural inspections might check for variations in part color, perhaps to find ripe fruit. AOI is a type of white box testing. It is commonly used in the manufacturing process because it is a non-contact test method. AOI is able to perform most of the visual checks performed previously by manual operators, and far more swiftly and accurately. AOI systems are implemented at many stages through the manufacturing process. They are used for inspecting parts that have limited and known variations. For defect or flaw detection, the AOI system looks for differences from a perfect part. There are systems capable of bare board inspection, Solder Paste inspection (SPI), as well as inspecting the component placement prior to reflow, the post-reflow component conditions, and post-reflow solder joints. These inspection devices all have some common attributes that affect capability, accuracy, and reliability.

In this way AOI can be used to detect problems early in the production process. Since faults cost more to fix later in the production process, it is essential to notice problems early. For example, problems in the solder and assembly area of a PCB can be seen early in the production process and information used to feedback quickly to previous stages, avoiding the production of too many boards with the same problem.

Automated optical inspection (AOI) is an automated visual inspection of a wide range of products, such as printed circuit boards (PCBs), LCDs, transistors, automotive parts, lids and labels on product packages or agricultural products (seed corn or fruits). In case of PCB-inspection, a camera autonomously scans the device under test (DUT) for variety of surface feature defects such as scratches and stains, open circuits, short circuits, thinning of the solder as well as missing components, incorrect components, and incorrectly placed components. Agricultural inspections might check for variations in part color, perhaps to find ripe fruit. AOI is a type of white box testing. It is commonly used in the manufacturing process because it is a non-contact test method. AOI is able to perform most of the visual checks performed previously by manual operators, and far more swiftly and accurately. AOI systems are implemented at many stages through the manufacturing process. They are used for inspecting parts that have limited and known variations. For defect or flaw detection, the AOI system looks for differences from a perfect part. There are systems capable of bare board inspection, Solder Paste inspection (SPI), as well as inspecting the component placement prior to reflow, the post-reflow component conditions, and post-reflow solder joints. These inspection devices all have some common attributes that affect capability, accuracy, and reliability.

In this way AOI can be used to detect problems early in the production process. Since faults cost more to fix later in the production process, it is essential to notice problems early. For example, problems in the solder and assembly area of a PCB can be seen early in the production process and information used to feedback quickly to previous stages, avoiding the production of too many boards with the same problem.

Low costs and programming efforts make AOI a practical and powerful quality tool for both prototypes and high-volume assembles. It is often paired with the testing provided by boundary scan test, in-circuit test, x-ray test, and functional test. In many cases, smaller circuit board designs are driving up the demand for AOI versus in-circuit test.


From Wikipedia, the free encyclopedia : Inspection of machinery, equipment and materials
If you like to see your banner here please go to  Business Solutions